Electrochemical and hydrometallurgical research on sphalerite leaching phenomena.


The project aims to develop efficient ways of gold leaching in cyanide free chloride solutions.


The research of BioPolyMet combines two of Finland’s main industrial sectors – Forestry (forest derived products) and the Metal industry by exploring the use of cellulosic based materials as new type of sustainable metal coating. This coating can result in improved hydrophobic or hydrophilic surface layers, improved printability, a replacement of Teflon as non-fingerprint coating, a replacement of PVC as wear resistant coating, esthetical new surfaces and increased bio content in the coatings to mention just a few. Emphasis is placed on an in depth understanding of the proposed materials under electrophoretic coating conditions that will allow for rapid upscaling and early industrial adoption. Work will be carried out on this project as a joint collaboration between Mari Lundström's research group of Hydrometallurgy and Corrosion and Department of Bioproducts and Biosystems (Prof. Herbert Sixta, Biorefineries).


The aim of the project is to boost the understanding of circular economy and material loops to enable development of material and process technologies regarding secondary raw material.


Circular Metal Ecosystem (CMEco) is a project bringing together Finnish industrial and academic partners in order to research the recovery of metals from different types of secondary raw materials. The project aims to reveled recovery of metals from metallurgical process related solids, such as leach residues, anode slimes and slags. Additionally, new mechanical, hydrometallurgical and pyrometallurgical methods are developed and existing processes are optimized in order to recover valuable, base and critical and metals from secondary raw materials such as Waste Electrical & Electronic Equipment (WEEE) and incineration plant residues like waste incineration bottom ash (IBA), thus bringing new circular economy business to Finland. The ultimate goal of the project is to develop new CleanTech and Circular economy business to Finland with improved metals recovery and impurity removal from process related solids such as leach residues, anode slimes, crud and slag, containing metals.


Interest in the recycling of NdFeB permanent magnets is increasing due to the need to recycle critical elements. The EU has classified neodymium and other rare earth elements as critical due to their high supply risk and economic significance in tech applications. Thus, this project is focused on selective recovery of select rare earths by hydrometallurgical and pyrometallurgical means.

IonCell F

Producing cellulosic textile fibers from dissolving pulp in an environmentally friendly process.


The topic of research for KYT project is on the corrosion of nuclear waste capsules in oxygen-free ground water.


The project focuses on the recovery of critical elements from electronic waste streams, including raw materials and the final product. Currently, only 1 % of critical elements in EU are recycled and this number must go up to ensure availability of critical raw material for industries.


METSEK project aims to develop efficient methods of hydrometallurgical metal recovery from secondary sources.


The project is funded by European Institute of Innovation & Technology to develop business and technical synergy between European raw materials producers.


The goal of the project is to efficiently recover precious metals from low quality waste solutions and produce high quality functional surfaces from these waste streams.

Sustainable Gold

This project focuses on cyanide-free gold leaching processes. Experimental research, process modelling, life-cycle analysis, and artificial intelligence are combined to produce new information about the environmental impacts of alternative gold production methods.



WEEE leaching

The project aim is to increase recovery of metals from waste electronic equipment.


Past projects



The project is focused on processing of jarosite ores and precious metal recovery from leaching waste.


The aim of the project is to develop more efficient ways to recycle electronic waste by pyrolytical and hydrometallurgical processes.


The project is aimed at researching and developing copper based hybrid rexod batteries.

CleanMET (2016-2017)

Recovery of metals from mining waters to reduce negative environmental impacts of metal pollution and decrease waste.


Increasing metal recovery from waste dust produced by pyrometallurgical processes.


SIMP project is optimizing the whole manufacturing process of copper from concentrate to cathode copper. Research group focus is on electrolytical processes related to electrorefining.


METYK (2016-2017)

The aim of METYK project ( is on recovery of precious and critical metals from battery waste.


Metyk project

Ultrawire (1.10.2013-30.9.2016)

The aim of the EU FP7 project ( was to develop a copper nanocarbon composite with significantly improved overall properties, including electrical, thermal and mechanical performances over bulk copper using production process that will be scalable to large volume manufacture.

Page content by: | Last updated: 22.01.2018.